High density mapping and haplotype analysis of the major stem-solidness locus SSt1 in durum and common wheat
نویسندگان
چکیده
Breeding for solid-stemmed durum (Triticum turgidum L. var durum) and common wheat (Triticum aestivum L.) cultivars is one strategy to minimize yield losses caused by the wheat stem sawfly (Cephus cinctus Norton). Major stem-solidness QTL have been localized to the long arm of chromosome 3B in both wheat species, but it is unclear if these QTL span a common genetic interval. In this study, we have improved the resolution of the QTL on chromosome 3B in a durum (Kofa/W9262-260D3) and common wheat (Lillian/Vesper) mapping population. Coincident QTL (LOD = 94-127, R2 = 78-92%) were localized near the telomere of chromosome 3BL in both mapping populations, which we designate SSt1. We further examined the SSt1 interval by using available consensus maps for durum and common wheat and compared genetic to physical intervals by anchoring markers to the current version of the wild emmer wheat (WEW) reference sequence. These results suggest that the SSt1 interval spans a physical distance of 1.6 Mb in WEW (positions 833.4-835.0 Mb). In addition, minor QTL were identified on chromosomes 2A, 2D, 4A, and 5A that were found to synergistically enhance expression of SSt1 to increase stem-solidness. These results suggest that developing new wheat cultivars with improved stem-solidness is possible by combining SSt1 with favorable alleles at minor loci within both wheat species.
منابع مشابه
Single Marker and Haplotype-Based Association Analysis of Semolina and Pasta Colour in Elite Durum Wheat Breeding Lines Using a High-Density Consensus Map
Association mapping is usually performed by testing the correlation between a single marker and phenotypes. However, because patterns of variation within genomes are inherited as blocks, clustering markers into haplotypes for genome-wide scans could be a worthwhile approach to improve statistical power to detect associations. The availability of high-density molecular data allows the possibilit...
متن کاملIdentification of Candidate Genes Responsible for Stem Pith Production Using Expression Analysis in Solid-Stemmed Wheat.
The wheat stem sawfly (WSS) is an economically important pest of wheat in the Northern Great Plains. The primary means of WSS control is resistance associated with the single quantitative trait locus (QTL) , which controls most stem solidness variation. The goal of this study was to identify stem solidness candidate genes via RNA-seq. This study made use of 28 single nucleotide polymorphism (SN...
متن کاملSystematic Investigation of FLOWERING LOCUS T-Like Poaceae Gene Families Identifies the Short-Day Expressed Flowering Pathway Gene, TaFT3 in Wheat (Triticum aestivum L.)
To date, a small number of major flowering time loci have been identified in the related Triticeae crops, bread wheat (Triticum aestivum), durum wheat (T. durum), and barley (Hordeum vulgare). Natural genetic variants at these loci result in major phenotypic changes which have adapted crops to the novel environments encountered during the spread of agriculture. The polyploid nature of bread and...
متن کاملDiscovery of a Novel Stem Rust Resistance Allele in Durum Wheat that Exhibits Differential Reactions to Ug99 Isolates
Wheat stem rust, caused by Puccinia graminis f. sp. tritici Eriks. & E. Henn, can incur yield losses in susceptible cultivars of durum wheat, Triticum turgidum ssp. durum (Desf.) Husnot. Although several durum cultivars possess the stem rust resistance gene Sr13, additional genes in durum wheat effective against emerging virulent races have not been described. Durum line 8155-B1 confers resista...
متن کاملEvaluation of genotype × environment interaction in durum wheat (Triticum turgidum var. durum L.) regional yield trials
The objective of this experiment was to analyze genotype × environment (GE) interaction for grain yield of 20 durum wheat genotypes to identify the yield stability and adaptability of genotypes using GGE biplot method as well as some univariate stability statistics. The genotypes were evaluated in three rainfed stations of Sararood (Kermanshah), Maragheh and Shirvan, Iran under both rainfed and...
متن کامل